An Introduction to Effectus Theory
نویسندگان
چکیده
Effectus theory is a new branch of categorical logic that aims to capture the essentials of quantum logic, with probabilistic and Boolean logic as special cases. Predicates in effectus theory are not subobjects having a Heyting algebra structure, like in topos theory, but ‘characteristic’ functions, forming effect algebras. Such effect algebras are algebraic models of quantitative logic, in which double negation holds. Effects in quantum theory and fuzzy predicates in probability theory form examples of effect algebras. This text is an account of the basics of effectus theory. It includes the fundamental duality between states and effects, with the associated Born rule for validity of an effect (predicate) in a particular state. A basic result says that effectuses can be described equivalently in both ‘total’ and ‘partial’ form. So-called ‘commutative’ and ‘Boolean’ effectuses are distinguished, for probabilistic and classical models. It is shown how these Boolean effectuses are essentially extensive categories. A large part of the theory is devoted to the logical notions of comprehension and quotient, which are described abstractly as right adjoint to truth, and as left adjoint to falisity, respectively. It is illustrated how comprehension and quotients are closely related to measurement. The paper closes with a section on ‘non-commutative’ effectus theory, where the appropriate formalisation is not entirely clear yet.
منابع مشابه
Dagger and dilations in the category of von Neumann algebras
This doctoral thesis is a mathematical study of quantum computing, concentrating on two related, but independent topics. First up are dilations, covered in chapter 2. In chapter 3"diamond, andthen, dagger"we turn to the second topic: effectus theory. Both chapters, or rather parts, can be read separately and feature a comprehensive introduction of their own.
متن کاملOperational Theories of Physics as Categories
We introduce a new approach to the study of operational theories of physics using category theory. We define a generalisation of the (causal) operational-probabilistic theories of Chiribella et al. and establish their correspondence with our new notion of an operational category. Our work is based on effectus theory, a recently developed area of categorical logic, to which we give an operationa...
متن کاملFrom probability monads to commutative effectuses
Effectuses have recently been introduced as categorical models for quantum computation, with probabilistic and Boolean (classical) computation as special cases. These ‘probabilistic’ models are called commutative effectuses, and are the focus of attention here. The paper describes the main known ‘probability’ monads: the monad of discrete probability measures, the Giry monad, the expectation mo...
متن کاملStates of Convex Sets
State spaces in probabilistic and quantum computation are convex sets, that is, Eilenberg–Moore algebras of the distribution monad. This article studies some computationally relevant properties of convex sets. We introduce the term effectus for a base category with suitable coproducts (so that predicates, as arrows of the shape X → 1 + 1, form effect modules, and states, as arrows of the shape ...
متن کاملAN INTRODUCTION TO THE THEORY OF DIFFERENTIABLE STRUCTURES ON INFINITE INTEGRAL DOMAINS
A special class of differentiable functions on an infinite integral domain which is not a field is introduced. Some facts about these functions are established and the special case of z is studied in more detail
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.05813 شماره
صفحات -
تاریخ انتشار 2015